Ubisol-Q10 Prevents Glutamate-Induced Cell Death by Blocking Mitochondrial Fragmentation and Permeability Transition Pore Opening

نویسندگان

  • Santosh Kumari
  • Suresh L Mehta
  • Gaolin Z. Milledge
  • Xinyu Huang
  • Haining Li
  • P. Andy Li
چکیده

Mitochondrial dysfunction and oxidative stress are the major events that lead to the formation of mitochondrial permeability transition pore (mPTP) during glutamate-induced cytotoxicity and cell death. Coenzyme Q10 (CoQ10) has widely been used for the treatment of mitochondrial disorders and neurodegenerative diseases. Comparing to traditional lipid-soluble CoQ10, water soluble CoQ10 (Ubisol-Q10) has high intracellular and intra-mitochondrial distribution. The aims of the present study are to determine the neuroprotective effects of Ubisol-Q10 on glutamate-induced cell death and to explore its functional mechanisms. HT22 neuronal cells were exposed to glutamate. Cell viability was measured and mitochondrial fragmentation was assessed by mitochondrial imaging. The mPTP opening was determined by mitochondrial membrane potential and calcium retention capacity. The results revealed that the anti-glutamate toxicity effects of Ubisol-Q10 was associated with its ability to block mitochondrial fragmentation, to maintain calcium retention capacity and mitochondrial membrane potential, and to prevent mPTP formation, AIF release, and DNA fragmentation. We concluded that Ubisol-Q10 protects cells from glutamate toxicity by preserving the integrity of mitochondrial structure and function. Therefore, adequate CoQ10 supplementation may be beneficial in preventing cerebral stroke and other disorders that involve mitochondrial dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats

Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...

متن کامل

Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons

Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mi...

متن کامل

Mitochondrial Permeability Transition and Cell Death: The Role of Cyclophilin D

Mitochondria serve as a "powerhouse" which provides near 90% of ATP necessary for cell life. However, recent studies provide strong evidence that mitochondria also play a central role in cell death. Mitochondrial permeability transition (mPT) at high conductance in response to oxidative or other cellular stresses is accompanied by pathological and non-specific mPT pore (mPTP) opening in the inn...

متن کامل

Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death.

The mechanisms underlying neuronal death following excessive activity such as occurs during prolonged seizures are unclear, but mitochondrial dysfunction has been hypothesised to play a role. Here, we tested this with fluorescence imaging techniques in rat glio-neuronal neocortical co-cultures using low Mg(2+) levels to induce seizure-like activity. Glutamate activation of NMDA receptors result...

متن کامل

Protective Effects of Astragaloside IV against Amyloid Beta1-42 Neurotoxicity by Inhibiting the Mitochondrial Permeability Transition Pore Opening

Mitochondrial dysfunction caused by amyloid β-peptide (Aβ) plays an important role in the pathogenesis of Alzheimer disease (AD). Substantial evidence has indicated that the mitochondrial permeability transition pore (mPTP) opening is involved in Aβ-induced neuronal death and reactive oxygen species (ROS) generation. Astragaloside IV (AS-IV), one of the major active constituents of Astragalus m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016